

GOVT. POLYTECHNIIC KORAPUT ACADEMIC SESSION 2020-2021 SEMESTER- 4th BRANCH - CIVIL ENGINEERING SUBJECT – STRUCTURAL DESIGN I FACULTY NAME – SUCHITRA LENKA

	Modul e	Topics to be
		covered
1	Module – I Working stress	Objectives of design and detailing & different methods of design of concrete structure
2	method (WSM)	Introduction to reinforced concrete, grades of concrete and steel, advantages of reinforced cement concrete, concept of under reinforced, balanced & over reinforced section
3	_	Assumptions in working stress method, derivation of formula for balanced design
4	_	Problem discussion on finding out the design constants and analysis of the section using WSM
5		Problem discussion on design of the section using WSM
6	Module – II (Philosophy of limit state	definition, advantages of LSM over WSM, Limit state of collapse & serviceability, Characteristic strength of material
7	method)	characteristic load, partial safety factor, design load, loading on structure, I.S specification regarding spacing of reinforcement in slab
8	_	IS specification regarding cover to reinforcement and minimum reinforcement in slab, beam & column, concept of lapping, anchorage, effective span for beam and slab.
9	Module – III Analysis and design of single	Assumptions, idealised stress - strain curve for steel and concrete
10	and double reinforced section (LSM)	Design stress block parameter, derivation of formula for singly reinforced rectangular beam
11	_	Finding out M.R, limiting M.R, percentage of steel and limiting percentage of steel
12		Problem discussion on finding out the type of the beam
13		Problem discussion on analysis of singly reinforced section
14		Problem discussion on analysis of singly reinforced section
15	4	OMR TEST - I
16		Problem discussion on design of singly reinforced beam

18	Necessity of providing doubly reinforced beam, stress &	
	strain	
	diagram, finding out depth of N.A and moment of	
	resistance	
19	Finding out the area of tensile & compression	
	reinforcement,	
	problem discussion on analysis of doubly reinforced beam	
20	Problem discussion on analysis of doubly reinforced beam	

21		Problem discussion on analysis of doubly reinforced beam	
22	-	Problem discussion on design of doubly reinforced beam	
23	Problem discussion on design of doubly reinforced beam		
24	Module – IV Shear,	Nominal shear stress, design shear strength of concrete,	
24	Bond &	maximum shear stress, criteria of minimum shear	
	Development	reinforcement and different forms of shear reinforcement	
25	length (LSM)	Problem discussion on design of shear reinforcement in	
20		beam	
26	-	Concept of bond, types of bond, bond stress,	
-		development length for tension and compression,	
		anchorage values for hook and bend, Problem	
		discussion on checking of	
		development length criteria in beams.	
27		OMR TEST - 2	
28	Module – V	General features, advantages, effective width of flange	
29	Analysis and design	Finding out position of neutral axis, Analysis of singly	
	of T – Beam (LSM)	reinforced T – beam, stress-strain diagram	
30		UNIT DISCUSSION – III & IV	
31		CLASS TEST	
32		Problem discussion on finding moment of resistance of a	
		Т-	
		beam section with N.A lies within the flange.	
33		Design of a T – beam section	
34		Design of a T – beam section	
35		Derivation of formula for T – beam section when the N.A	
		lies	
		in the web	
		Problem discussion on design of simply supported beam	
36		along	
	-	with provision of check for flexure	
37		Design of simply supported beam along with check for	
		shear	
	-	and development length	
38		Design of simply supported beam along with check for	
	-	deflection and detailing of the beam	
39	-	Problem discussion on analysis of the T – Beam section	
40	-	OMR TEST - 3	
41	-	Problem discussion on design of the T – Beam section	
42		INTERNAL QUESTION DISCUSSION AND	
		DISTRIBUTION OF	
		EVALUATED ANSWER SHEET TO THE STUDENT	
43	Module – VI	Concept of one way and two way spanning slab,	
	Analysis of design	reinforcement requirement, shear stress, spacing of	
	of (1.014)	reinforcement, cover and development length criteria for	
4.4	slab & staircase(LSM)		
44		Design of simply supported one way slab with design of	
45	4	flexure	
45		Design of slab with check for shear and development	
46	4	length. Design of slab with check for deflection and detailing of	
+0		•	
		the slab.	
47	4	Design of cantilever slab with check for flexure, check for	
71		shear, development length, deflection and detailing of	
		the	
		slab	
1			

48]	OMR TEST - 4
49	Design of two way simply supported slab- moment	
		shear
		force calculation
50		Design of two way slab with corners free to lift – design of
		flexure

F 4		Desire of two ways shall with some initial of shareholder and	
51		Design of two way slab with provision of check for shear	
		and	
		development length	
52		Design of two way slab with check for deflection and	
		detailing	
		of the slab	
53	-	Types of staircase, structural classification of staircase,	
55			
		Loads	
	4	and their effect on stair slab	
54		Design of stair slab spanning longitudinally – design of	
		main bar, distribution bar and detailing of the staircase	
55		Design of a waist slab type dog legged stair case – load	
		and	
		moment calculation	
56		Design of a waist slab type dog legged stair case – design	
00		of	
F7	-	main bar, distribution bar and detailing of the slab	
57		UNIT DISCUSSION – V & VI	
58	Module – VII Design	definition and classification of column, assumptions in limit	
	of axially loaded	state of collapse	
59	columns and footing	Effective length of column, specification for longitudinal &	
	(LSM)	transverse reinforcement.	
60		Minimum eccentricity and ultimate load carrying capacity	
00		of	
		-	
04	4	column	
61		Design of a short axially loaded square column and	
	4	detailing	
62		Design of a short axially loaded square column and	
	-	detailing	
63		Design of a short axially loaded rectangular column and	
		detailing	
64		Design of a short axially loaded rectangular column and	
		detailing	
65		Design of a short axially loaded circular column and	
		detailing	
66	-	Design of a short axially loaded circular column and	
00		detailing	
67	-	Definition, Types of foundation, Bearing capacity of soil	
07		& depth of foundation, determination of area of footing	
		from	
60	4	load and bearing capacity of soil	
68	4	OMR TEST - 5	
69		Analysis of foundation – critical section for bending	
		moment	
		and shear force, transfer of load at base of column	
70		Design of isolated square footing for column – design of	
		flexure	
71	1	Design of isolated square footing for column – shear one	
⁽			
		way	
70	4	action and two way action	
72		Design of isolated square footing for column –	
		development	
		length, load transfer from column to footing & detailing	
73		Design of isolated square footing for column –	
		design of flexure	
74	1	Design of isolated square footing for column – shear one	
• •			
		way	

	action and two way action, development length & detailing
75	UNIT DISCUSSION – VII

Period	Module	Topics to be covered	Remarks/Sign of the faculty member
1	Module - I	Working stress method - Objectives of design and detailing & different methods of design of concrete structure	
2		Introduction to reinforced concrete, grades of concrete and steel, advantages of reinforced cement concrete, concept of under reinforced, balanced & over reinforced section	
3		Assumptions in working stress method, derivation of formula for balanced design	
4		Problem discussion on finding out the design constants and analysis of the section using WSM	
5		Problem discussion on design of the section using WSM	
6	Module - II	Philosophy of limit state method – definition, advantages of LSM over WSM, Limit state of collapse & serviceability, Characteristic strength of material	
7		characteristic load, partial safety factor, design load, loading on structure, I.S specification regarding spacing of reinforcement in slab	
8		IS specification regarding cover to reinforcement and minimum reinforcement in slab, beam & column, concept of lapping, anchorage, effective span for beam and slab.	
9	Module - III	Analysis and design of single and double reinforced section (LSM) – Assumptions, idealised stress - strain curve for steel and concrete	
10		Design stress block parameter, derivation of formula for singly reinforced	

	rectan	gular beam	
11	Fi	nding out M.R, limiting M.R,	
		percentage	

		of steel and limiting percentage of steel	
12		Problem discussion on finding out the	
		type of the beam	
13		Problem discussion on analysis of	
		singly	
		reinforced section	
14		Problem discussion on analysis of	
		singly	
		reinforced section	
15		Problem discussion on design of singly	
		reinforced beam	
16		Problem discussion on design of singly	OMR 1
17		reinforced beam	
		Necessity of providing develop	
18		Necessity of providing doubly reinforced beam, stress & strain	
		diagram, finding out	
		depth of N.A and moment of resistance	
19		Finding out the area of tensile &	
		compression reinforcement, problem	
		discussion on analysis of doubly	
		reinforced beam	
20		Problem discussion on analysis of	
		doubly	
		reinforced beam	
21			
22		Problem discussion on design of	
		doubly	
		reinforced beam	
23		Problem discussion on design of	
		doubly	
0.4		reinforced beam	
24	Module - IV	Shear, Bond & Development length	
		(LSM)	
		 Nominal shear stress, design shear strength of concrete, maximum shear 	
		stress, criteria of minimum shear	
		reinforcement and different forms of	
		shear reinforcement	
25		Problem discussion on design of shear	
		reinforcement in beam	
26		Concept of bond, types of bond,	
		bond stress, development length	
		for tension and compression,	
		anchorage values for	
27		hook and bend	Units discussion
21		Problem discussion on checking of development length criteria in beams.	บาแจ นเรยนจรเปท
28	Module - V	Analysis and design of T – Beam	internal
20		(LSM)- General features, advantages,	Internal
		effective	
		width of flange	
29		Finding out position of neutral axis,	
		Analysis of singly reinforced T -	
		beam,	
		stress-strain diagram	

30	Finding out depth of neutral axis and M.R	Omr 2
	of a T - beam section with N.A lies within the flange	
31	Problem discussion on finding moment	
	of resistance of a T- beam section with	
	N.A	

		lies within the flange.	
32			
33		Design of a T – beam section	
34		Design of a T – beam section	Inernal question discussion and distribution of evaluated answer book
35		Duchland discussion on design of simply	
36		Problem discussion on design of simply supported beam along with provision of check for flexure	
37		Design of simply supported beam along with check for shear and development length	
38		Design of simply supported beam along with check for deflection and detailing of the beam	
39		Problem discussion on analysis of the T – Beam section	
40			
41			
42 43	Module - VI		
40		Analysis of design of slab & staircase(LSM) – Concept of one way and two way spanning slab, reinforcement requirement, shear stress, spacing of reinforcement, cover and development length criteria for slab	
44		Design of simply supported one way slab with design of flexure	
45		Design of slab with check for shear and development length.	Omr 3
46		Design of slab with check for deflection and detailing of the slab.	
47		Design of cantilever slab with check for flexure	
48		Design of cantilever slab with check for shear, development length, deflection and detailing of the slab	
49		Design of two way simply supported slab- moment and shear force calculation	
50		Design of two way slab with corners free to lift – design of flexure	
51		Design of two way slab with provision of check for shear and development length	
52		Design of two way slab with check for deflection and detailing of the slab	

53	Types of staircase, structural	
	classification	
	of staircase	
54	Loads and their effect on stair slab,	
	load	
	and moment calculation of a stair slab	

		spanning longitudinally	
55		Design of stair slab spanning longitudinally – design of main bar, distribution bar and detailing of the staircase	
56		Design of a waist slab type dog legged stair case – load and moment calculation	
57		Design of a waist slab type dog legged stair case – design of main bar, distribution bar and detailing of the slab	
58	Module - VII	Design of axially loaded columns and footing (LSM)- definition and classification of column, assumptions in limit state of collapse	
59		Effective length of column, specification for longitudinal & transverse reinforcement.	
60		Minimum eccentricity and ultimate load carrying capacity of column	Omr 4
61		Design of a short axially loaded square column and detailing	
62		Design of a short axially loaded square column and detailing	
63		Design of a short axially loaded rectangular column and detailing	
64		Design of a short axially loaded rectangular column and detailing	
65		Design of a short axially loaded circular column and detailing	
66		Design of a short axially loaded circular column and detailing	
67		Definition, Types of foundation	
68		Bearing capacity of soil & depth of foundation, determination of area of footing from load and bearing capacity of soil	
69		Analysis of foundation – critical section for bending moment and shear force, transfer of load at base of column	
70		Design of isolated square footing for column – design of flexure	omr
71		Design of isolated square footing for column – shear one way action and two way action	
72		Design of isolated square footing for column – development length , load transfer from column to footing & detailing	
73			
74			

75		
75		